
Capriqorn Documentation
Release 1.0.1

Juergen Koefinger, Klaus Reuter

Sep 17, 2020

Contents

1 Introduction 3

2 Requirements 5

3 Installation 7
3.1 Quick Start . 7
3.2 Basic workflow . 7

4 Documentation 9
4.1 Background . 9
4.2 Method Details . 9
4.3 How to use Capriqorn . 10
4.4 Tips and tricks . 11
4.5 Notes . 12

5 Technical Features 13

6 Source documentation 15
6.1 Capriqorn modules . 15
6.2 Capriqorn executables . 15

7 License and Citation 17

8 Indices and tables 19

i

ii

Capriqorn Documentation, Release 1.0.1

Contents 1

Capriqorn Documentation, Release 1.0.1

2 Contents

CHAPTER 1

Introduction

CAPRIQORN: CAlculation of P(R) and I(Q) Of macRomolecules in solutioN.

Capriqorn is a software suite designed to facilitate the calculation of quantities such as pair-distance distribution
functions and scattering intensities directly from the output trajectories of molecular dynamics simulations.

In particular, Capriqorn implements the methods published in the following publication:

Atomic-resolution structural information from scattering experiments on macromolecules in solution
Jürgen Köfinger and Gerhard Hummer
Phys. Rev. E 87, 052712 (2013)

For your convenience, we provide citations in bibtex format and endnote format.

Additionally, a novel method for non-spherical observation volumes using virtual particles has been implemented
(manuscript in preparation).

3

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.87.052712

Capriqorn Documentation, Release 1.0.1

Capriqorn is mostly implemented in Python with time-critical kernels accelerated using compiled Cython code. The
distance histogram calculation is done via the Cadishi package which offers high-performance parallel implementa-
tions for the CPU and the GPU.

4 Chapter 1. Introduction

CHAPTER 2

Requirements

Capriqorn runs on Linux and OS X platforms. In particular, the following software packages are required.

• Capriqorn requires a Python 2.7 installation including the NumPy, SciPy, Cython, h5py, and PyYAML modules.
We have successfully used the Anaconda Python Distribution which provides all these modules out of the box.
Moreover, to compile the Cython kernels, a recent GCC installation is required.

• Capriqorn requires the Cadishi Python package to perform fast distance histogram calculations on CPUs and
GPUs.

• Capriqorn requires the MDAnalysis Python library, in particular its data reader which supports various file
formats from molecular dynamics simulation codes.

• Optionally and for convenience, a HDF5 viewer (such as HDFView or HDF Compass) is useful to be able to
quickly inspect the HDF5 files generated by Capriqorn.

5

Capriqorn Documentation, Release 1.0.1

6 Chapter 2. Requirements

CHAPTER 3

Installation

The package comes with a standard Python setup.py installer. It is installed e.g. as follows into the user’s homedirec-
tory:

python setup.py install --user

In this case, setup.py copies the Cadishi files into the directory ~/.local. Make sure that your PATH environment
variable contains the directory ~/.local/bin. To perform a system-wide installation omit the --user flag (and
prefix the command with sudo to gain administrative privileges on a typical Linux system).

3.1 Quick Start

To run the example analysis pipeline that comes with Capriqorn please issue the following sequence of commands:

capriq example # generate example parameter files
capriq preproc # run preprocessor
capriq histo # run distance histogram calculation
capriq postproc # run postprocessor

3.2 Basic workflow

Capriqorn implements the concept of a data processing pipeline. A typical workflow consists of three stages.

1. preprocessor run: Read MD trajectory, apply methods, write to single HDF5 file.

2. distance histogram calculation: Read frames from HDF5 file, compute histograms, write to HDF5 file.

3. postprocessor run: Read histograms from HDF5 file, perform computations (PDDF), write to HDF5 file.

The data processing pipeline is implemented using Python generators. Methods (computations, geometry and data
modifications, etc.) are considered ‘filters’.

7

Capriqorn Documentation, Release 1.0.1

8 Chapter 3. Installation

CHAPTER 4

Documentation

4.1 Background

Macromolecules in solution

To calculate the scattering intensities and pair-distance distribution functions of macromolecules in solution from
a molecular dynamics trajectory using explicit solvent, we have to account for the finite size and shape of the simu-
lation box to avoid artifacts in the scattering intensity. To do so, we cut out an observation volume containing the
macromolecule and a sufficiently thick layer of solvent.

Pure solvent simulations

In experiments, the difference intensity between the macromolecule in solution and pure solvent is determined. We
therefore also have to simulate pure solvent. In our method, we only need the particle densities and partial radial
distribution functions calculated from these pure solvent simulations. This approach is in contrast to other methods,
where the same observation volume as it is used for the macromolecule in solution, has to be cut out from the solvent
trajectory.

Self-consistent solvent matching

Small differences in the solvent densities and structure at the border of the observation volume can lead to artifacts
in the small angle regime. To avoid such artifacts, we match solvent properties of the system containing the macro-
molecule and pure solvent in a layer at the boundary of the observation volume by properly scaling particle densities
and partial radial distribution functions.

4.2 Method Details

Pure solvent

We describe pure solvent by its particle densities and partial radial distribution functions. These quantities are
calculated using Capriqorn from a pure solvent simulation in a separate calculation and then provided as input to
Capriqorn when analyzing the trajectory of the macromolecule in solution.

Macromolecule in solution

9

Capriqorn Documentation, Release 1.0.1

We we can choose various geometries (observation volumes) to cut the macromolecule and sufficient solvent out of
the simulation box.

Choosing the geometry we want to

• increase the signal-to-noise ratio and increase performance by minimizing the amount of bulk solvent while

• including sufficient bulk solvent to avoid finite size effects and to facilitate solvent matching.

Each of the geometries listed below has its own merits. A sphere is the most efficient geometry for globular macro-
molecules. For all other geometries, we have to use virtual particles (“ideal gas” particles) to account for the geometry
of the observation volume which comes with additional computational costs.

Overview of observation volume geometries:

• Sphere A sphere centered at the origin is cut out. No virtual particles are needed.

• Cuboid and Ellipsoid Cuboids and ellipsoids are centered at the origin. Their faces/axes are aligned with the
coordinate system. The box should be rotated such that the macromolecule is aligned correspondingly (tcl
script orient.tcl used with VMD).

• Single reference structure A single reference structure is used for all frames to cut out particles within a
distance of this reference structure. Minimum number of solvent particles are added, resulting in a better
signal to noise ratio. Only a subset of the atoms has to be selected in the reference structure, e.g., select
only carbon atoms for a protein. Uses virtual particles. Reference structure should be RMSD aligned with
trajectory.

• Multiple reference structures (i.e., a reference trajectory) A trajectory is providing reference structures for
each frame individually to cut out particles within a distance of the reference structures. Usually, the
trajectory used for reference is the same trajectory we want to calculate scattering intensities for. Only a
subset of the atoms has to be selected in the reference structure, e.g., select only carbon atoms for a protein.
Uses virtual particles. No alignment with coordinate system necessary.

4.3 How to use Capriqorn

Example: Hen egg-white lysozyme

We provide example input files and plots of the results at http://ftp.biophys.mpg.de/tbhummer/Capriqorn. We suggest
to use it to get started. You can pick the parameter files for the geometry of your choice and adapt them accordingly
to your problem at hand. Additionally, you can use capriq example to generate commented parameter files.

1. Prerequisites

• Input trajectories

– PDB file (provides atom names)

– Trajectory file

• Mapping of atom names to element names Different force fields use different atom names. We have to
map these names onto the corresponding element names, which determine the form factors for each
element. This information is saved in a file we usually call alias.dat. This file contains the atom
name provided by the force field in the first column and the element name in the second column. The
bash script get_aliases_initial_guess_from_pdb.sh extracts atom names from a pdb
and provides a first guess of the element names. !!!YOU HAVE TO EDIT THIS FILE BY HAND
AND MAKE CORRECTIONS!!!

2. Pure solvent

• We suggest to use orthorhombic (cubic) boxes of similar size (or larger) as the simulation box used
for the macromolecule in solution.

10 Chapter 4. Documentation

http://ftp.biophys.mpg.de/tbhummer/Capriqorn

Capriqorn Documentation, Release 1.0.1

• The force field and composition of the pure solvent should be the same as in the simulation of the
macromolecule.

3. Macromolecule in solution

• Preparation of the trajectory

The macromolecule has to be centered in the box, ideally maximizing the solvent thickness
around the macromolecule, i.e., maximizing the minimum distance of atoms of the macro-
molecule to the box borders:

– Sphere: Center macromolecule at origin.

– Cuboid: Center macromolecule at origin and align principal axis with VMD (tcl script
orient.tcl)

– Ellipsoid: Center macromolecule at origin and align principal axis with VMD (tcl script
orient.tcl)

– Reference: RMSD alignment of the macromolecule with chosen reference structure.

– MultiReference: When using the same trajectories as input and reference, no alignment is
necessary.

Trajectories can be prepared with VMD (wrapping of the box: http://www.ks.uiuc.edu/Research/
vmd/plugins/pbctools/) or if you use Gromacs using trjconv (gmx trjconv in newer versions
Gromacs).

• Preprocessing: capriq preproc -f preprocessor.yaml

– Run the preprocessor for each trajectory separately. The preprocessor can be run in parallel over
a single node. Also note that splitting the trajectory in multiple files facilitates further trivial
parallelization of the preprocessor.

• Histogram calculation: capriq histo -f histograms.yaml

– Multiple trajectory h5-files (preprocessor output) can be read in. We use Cadishi to efficiently
calculate histograms on CPUs and/or GPUs.

• Postprocessing: capriq postproc -f postprocessor.yaml

– Multiple histogram h5-files can be read in at once for postprocessing.

– The output is stored in an hdf5 file, which can be unpacked using “capriq unpack” such that the
output files are available in ASCII format.

4. Analysis

• Reading in hdf5 files with python (template is coming soon!)

4.4 Tips and tricks

• Use VMD (http://www.ks.uiuc.edu/Research/vmd/) to choose and check geometry of observation volume.

– Using selection strings, you can choose representation in VMD which visualize various geometries.
Note that the selection string syntax in VMD is different to the one used in Capriqorn (Capriqorn
using MD Analysis which uses CHARMM syntax).

– The preprocessor can write out xyz files which you can visualize using VMD to check that the macro-
molecule has been cut out correctly.

– To cite VMD, please visit http://www.ks.uiuc.edu/Research/vmd/allversions/cite.html.

4.4. Tips and tricks 11

http://www.ks.uiuc.edu/Research/vmd/plugins/pbctools/
http://www.ks.uiuc.edu/Research/vmd/plugins/pbctools/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/allversions/cite.html

Capriqorn Documentation, Release 1.0.1

• Capriqorn offers a plethora of methods and modules. See the example parameter files for an overview. The files
can be written via the command capriq example [–expert] The –expert switch adds additional options which
allow to override some default values. Some hints on the parameter choices, the general usage, and the file
handling are given in the following.

– For various reasons Capriqorn uses HDF5 files. To inspect a HDF5 file, use a viewer software or extract
the HDF5 file using the Capriqorn command capriq unpack.

– Compression of the HDF5 output datasets using the LZF algorithm is usually beneficial regarding perfor-
mance and file size. LZF comes with h5py by default. Other installations and tools may lack LZF, so
use no compression or gzip compression in case you need to interact with such software. You can use the
capriq merge tool to change the compression of a file.

• An essential part of the Capriqorn pipeline consists of the distance histogram calculation performed by the
Cadishi package. Cadishi offers many parameters which allow to tune and optimize the performance. As a
quick start one may try the following configuration via the parameter file:

– adapt the number of CPU workers to the number of CPU sockets you have in your system;

– adapt the number of threads per CPU worker to the number of cores you have per socket, however, consider
the following point:

– when choosing the thread numbers reserve one core each for the input and output processes and for the
GPU processes (if applicable);

– pinning the processes to NUMA domains is usually a good idea;

– example: On a dual socket system with 8 cores per socket and two GPUs one may start with the following
configuration: 2 CPU workers, 6 threads per CPU worker, 2 GPU workers.

By default Cadishi uses a reasonable process and thread configuration.

4.5 Notes

• Efficiency:

– In the current version of the code, the histogram calculation in Cadishi has been highly optimized. Com-
pared to the histogram calculation, the preprocessor, however, can take a significant amount of time as it
has not been fully optimized yet.

– The preprocessor pipeline can be parallelized using the ParallelFork() and ParallelJoin() filters.

• Capriqorn uses MDAnalysis (http://www.mdanalysis.org) for reading in trajectories.

– From their website: “MDAnalysis is an object-oriented Python library to analyze trajectories from molec-
ular dynamics (MD) simulations in many popular formats. It can write most of these formats, too, together
with atom selections suitable for visualization or native analysis tools.”

– To cite MDAnalysis, please visit http://www.mdanalysis.org/pages/citations/.

12 Chapter 4. Documentation

http://www.mdanalysis.org
http://www.mdanalysis.org/pages/citations/

CHAPTER 5

Technical Features

Capriqorn provides – but is not restricted to – the following functionalities:

• versatile read-in of MD trajectories in various formats

• trajectory preprocessing

• high-performance parallel distance histogram calculation on CPUs and GPUs using the Cadishi package

• histogram postprocessing

• efficient data handling using HDF5 files

13

Capriqorn Documentation, Release 1.0.1

14 Chapter 5. Technical Features

CHAPTER 6

Source documentation

To be done via docstrings after re-structuring of the code base.

6.1 Capriqorn modules

The following documentation was automatically generated from the docstrings present in the source code files.

TODO: include files after Capriqorn modularization

6.2 Capriqorn executables

The following documentation was automatically generated from the docstrings present in the source code files.

TODO: include files after Capriqorn modularization

15

Capriqorn Documentation, Release 1.0.1

16 Chapter 6. Source documentation

CHAPTER 7

License and Citation

Capriqorn is released under the GPLv2 license. See the file LICENSE.txt for details.

Copyright 2015-2017

• Jürgen Köfinger, Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-
Straße 3, 60438 Frankfurt am Main, Germany, juergen.koefinger@biophys.mpg.de

• Klaus Reuter, Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748 Garching, Germany,
klaus.reuter@mpcdf.mpg.de

• Max Linke, Max Planck Institute of Biophysics, Department of Theoretical Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt am Main, Germany, max.linke@biophys.mpg.de

17

mailto:juergen.koefinger@biophys.mpg.de
mailto:klaus.reuter@mpcdf.mpg.de
mailto:max.linke@biophys.mpg.de

Capriqorn Documentation, Release 1.0.1

18 Chapter 7. License and Citation

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

19

	Introduction
	Requirements
	Installation
	Quick Start
	Basic workflow

	Documentation
	Background
	Method Details
	How to use Capriqorn
	Tips and tricks
	Notes

	Technical Features
	Source documentation
	Capriqorn modules
	Capriqorn executables

	License and Citation
	Indices and tables

